402 A. G. KoLrakov

4. DEMIDOVICH B. P. and MARON 1. A., Fundamentals of Computational Mathematics. Fizmatgiz, Moscow, 1963.
5. ﬁAKIT SKH Yu. V., USTINOV S. M. and CHERNORUTSKII, Numerical Methods of Solving Stiff Systems. Nauka,
oscow, 1979, ’

6. GRADSHTEIN I. S. and RYZHIK 1. M., Tables of Integrals, Sums, Series and Products. Nauka, Moscow, 1986.

Translated by R.C.G.

J. Appl. Maths Mechs Vol. 56, No. 3, pp. 402-409, 1992 0021-8928/92 $15.00 + .00
Printed in Great Britain. © 1992 Pergamon Press Ltd

ON THE THERMO-ELASTICITY PROBLEM OF
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The general case of the problem of the thermo-elasticity of non-uniform plates is considered. A formal
asymptotic expansion is constructed and the limiting problem (when the thickness of the plate approaches
zero) is obtained. The limiting problem in the general case turns out to be different from the classical one, in
particular, it contains five unknown functions, and the defining equations contain not only the temperature
but also its derivatives (although the material of the plate is assumed to obey the Duhamel-Neumann law).
These effects do not occur in uniform plates of constant thickness. This is obviously the reason why the
effects stated below have not been mentioned previously, as far as we know.

A GENERAL scheme of the asymptotic method for passage from a three-dimensional problem of the
theory of elasticity in a thin region (thickness ¢<<1) to a problem in the theory of plates was
previously proposed in [1]. A case which leads to the classical equations of thermo-elastic plates was
considered in [2] (it turns out that it corresponds to the case when the coefficients of thermal
expansion of the material of the plate are of the order of ).

1. FORMULATION OF THE PROBLEM

Suppose a three-dimensional linearly elastic body occupying the region Q. of characteristic
thickness € <1 is obtained by repetition of an element P, (the periodicity cells, PC) in the x; x; plane
(Fig. 1). The condition ¢ <1 is formalized in the form e—0.

The equations of equilibrium of this body have the form [3]

Soi,vi,,dz+ Sfadz -0 (1.1)
Q. Qe
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FiG. 1.

wevV={veH'(Q.):v(x)=0 on T.}, and T, is the end surface (Fig.1). Problem (1.1)
corresponds to clamping of the body on the end surface and to the free side surface.

We will take the defining equations of the material of the plate in the form (the Duhamel-
Neumann law [3])

o=t (ayu(Z/e)ur, —Pi;(Z/e)0)

Bﬂ(f/e)=a.~,-.,(5/e)a,.,(i/e) (1.2)

where o;; are the local stresses, i are the displacements, 6 is the temperature (in the problem
considered it is assumed to be a specific steady-state value) and a;;,(¥/¢) and o;;(¥/e) are the tensors
of the coefficients of the elastic constants and thermal expansion. The functions a;;,(¥/€), o;(¥/e)
(B, (#/¢), respectively, are periodic with respect to £ with a periodicity cell P,. Here we take B, (¥/¢)
in the form

Bij (z/e) = B (z/e) + eB() (2/e) + . . . (1.3)

(o (le) = ¥ (#/e) +2afV) (%e) +. . ., respectively).
Equations (1.2) and (1.3) introduce the parameter e-—the characteristic thickness of the plate—into the
defining relations. The following treatments of the presence of ¢ in them are possible.

The physical asymptotic form. The elastic and thermo-elastic constants of the material are variable, i.e. we
consider the spectrum of plates of different thickness and of different materials. For this case a characteristic
value of Bi(-o) = 0. This is due to the fact that from physical points of view, as the stiffness of the material
increases, its coefficient of thermal expansion should decrease. This case, for B,.(]-l) #0, leads to the classical
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problem of thermo-elasticity {2]. Note that physical representat;ons do not guarantee that B} (k) £0. Rather.
from the physical point of view we might expect that B =0fork=0,1,2and {3( b #0 eginning with
k=3.

The geometrical asymptotic form. Suppose the material of the plate is physically the same for all values of its
thickness. Then € in (1.2) and (1.3) is understood as a formal parameter introduced in order to take into
account the connection between the stiffness of the plate and its thickness. For this case, Bjj 0 %0 and B (k)
=Q0fork=1.

2. THE ASYMPTOTIC EXPANSION

To analyse the problem in question we will use the standard asymptotic expansion from [1] for the
solution

i = i (X) + ed" (X, ) + ... = Za*am(x‘, ) @2.1)
k=0

a@™>=0, k=1, 2,...

1 _
o= mes S, § "4y

is the average of the periodicity cell P; = ¢ 'P, = {§ = #/e:XE P, } in the “fast” variables y = #/¢
and S, is the projection of P; on the y;y; plane;
for the test function

b =50 (X) + 5O (X, 5) + ... = Z 500 (X, §) (2.2)
k=0
for the stresses
0;; = el (X, §) + eGP (X J) + ... = 2 "ol (X, %) (2.3)
m==—3

Here X = (x_x;) is the “slow” variable in the plane of the plate, see [1]. The functions on the
right-hand sides of (2.1)—-(2.3) are taken to be periodic in y; and y, with a periodicity cell S;.

For the functions of the arguments X, y, the differentiation operators 4/9x; can be represented in
the form (see [13]) 8/0X, + &~ 18/dy, (@ = 1, 2), £ 18/9y;.

Here and henceforth the Greek subscripts take the values 1 and 2, and the Latin subscripts take
the values 1, 2 and 3 (unless explicitly stated otherwise). We also use the notation f;, = f/ay;,
fox = 8ff3x4.

Substituting expansions (2.1)-(2.3) into (1.1) and taking into account the rule for the replacement
of differentiation operators, we obtain

L) L o0
e (ema ol ol + eriolRuflu) o+ 3 fefowar =0 4
k=0 m=—3 Ql k=0 Q‘E

Here also we have changed to the variable v = (x1, x», y3) in the integrals. This replacement
transfers the region of integration Q. of variable thickness into the region Q:° = {(x{, X2, y3=
x3/€): X € Q, }—thicknesses of the order of unity. This is more convenient for investigating the
problem. The factor ¢ in the integrals in (2.4) is related to this replacement.

By substituting the expansions (2.2) and (2.3) into (1.2) we obtain, after equating expressions in
the same powers of &, the following relation:

07 = Gipatihad + iy —Bi7 V0 (2.5)
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The following relation will be useful later:

) (X5~ § (> (D)X mpm e 0 2.6)
Q¢

where S is the projection of Q,° (and Q.) onto the xyx, plane. For the justification of this
relationship see [1].

3. THE EQUATIONS OF EQUILIBRIUM OF THE PLATE

These equations are obtained independently of the defining equations. They were obtained in [1],
so we will not derive them in detail here. We will merely note that the equations for the forces
N{™ = (™ ) and moments M{™ = (¢ ™ y;) are obtained from (2.4) by considering test func-
tions of the form v = 7O(X) (the equations for the forces) and v = ev") = ey, (X) (the equations
for the moments). The equations for the forces have the form

NPoe =0,m =—3,—2,—1 (3.1)
The equations for the moments have the form
—M{D o + NE?P =0, m=~—2 (32)

These equations of equilibrium are identical with the classical ones and are the same irrespective
of the defining relations of the materials of the plate [1]. The specific features of the problem
considered here arise when analysing the defining relations derived below.

4. DERIVATION OF THE DEFINING RELATIONS OF THE PLATE

4.1. Stretching in the plane of the plate

We will take a test function in Eq. (2.4) in the form v = ev'(y). Then vgll)u =0 and in (2.4) the
only terms that remain are those corresponding to k = 1. Consider the expressions in (2.4) for the
same non-negative powers of ¢. For m = —3, integration of (2.4) by parts gives

Ufls)w =0 in Q,, USIS)" =0 ony (4.1)

Here Q;=¢'Q, (not to be confused with Q%) is obtained by periodic repetition of the
periodicity cell Py in the y, y, plane, 7 is the external normal to O, and v is the side (free) surface of
0, obtained by periodic repetition of the side surface of the periodicity cell P; (in this connection
henceforth vy is used to denote both surfaces).

Consider (2.5) once again. For m = —3 these relations give

0:13) = aukausc ax 1 a,,uuk l,, ﬁ(o)e (4.2)

As a result, we arrive at problem (4.1), (4.2) with the following conditions, which arise from the

definition of the function #*’ in expansion (2.1):

'’ (X,y) are periodicin ¥, ¥, with PC S, and <a@‘""»=0 (4.3)

To solve this problem (which is linear in the variables y with @®(X), 8(X) playing the role of
parameters) we introduced [1, 2] the so-called cell problems (CP), which have the following form:
the cell problems of the theory of elasticity for plates

pay , .
(aiikl-/vkv Iy—aiipaya"),jy =0 In Pl (44)
-3 |
(@3iNk. 1y — @;jpays¥)nj =0 on y

NP**(§) are periodic in y, and y2 on S and (NP*)=0, v=0, 1 and the cell problems of
thermo-elasticity for plates
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N , )
(@iiFRy —BY), jy =0 in Py (4.5)
(@isaFe y — By ) n; =0 on y

FO)(y) are period in y, and y, on §; and (F®) =0, v =0, 1.
Solutions of problems (4.4) and (4.5) exist and are unique for standard conditions on the elastic
and thermo-elastic constants (for example [3]).

It was shown in [1] that
N0 () =—ysés (4.6)
where { &g} are basis vectors.
By comparing (4.4) and (4.5) with (4.1)-(4.3), taking into account the linearity of the last
problem, we obtain (taking (4.6) into account)
am — N0y ul® 8, - FO 4 % (X) 4.7

The occurrence of the function w(X) is due to the fact that problem (4.1)-(4.3) contains only
derivatives with respect to the variable y.

To determine the functions 4, @ (a = 1, 2) we will use Egs (3.1) for m = —3. Substituting (4.7)
into (4.2) we obtain

-3 (i} 0 0 () £0),
0l7¥ = ittt ax + AyVERUS g — Gijpstis px + GijiF 1,0 — P70 =

® NaBe () 7O o g
= @ijuplia, px + Rijn1iVx, tybha, = + Bipfx, 1y — Piy' 9

Averaging the latter equation over the periodicity cell P; we obtain for i = v$

N = (058" = (aysap + ByoriNI D> U g — (P — Byori P> B (4.8)
4.2. Bending
Substitating (4.8) into (3.1) for m = —3 and ij = vd we obtain the equation
(Cayaap + BookiVE ) U gx — (B — ayaiiFi1,) 8), g =0 {4.9)

The boundary conditions for u,?, « = 1, 2 follow from the original boundary conditions and the
expansion (2.1) (see [1] for more details) and have the form

' (X)=0, a=1,2 on 3$ (4.10)

We will denote the solution of problem (4.9), (4.10), which, unlike the elastic case [1}, is not
necessarily the zeroth solution, by

Ua'"=(R0)e, w=1,2 (4.11)

where R is the resolving operator of problem (4.9), (4.10). (In fact the operator in (4.11) depends
only on V4 since the coefficients in (4.9) are constants; see [4].)

The fact that the quantity R6 does not, in general, vanish, gives rise, in the final case, to all the
specific features of the problem considered.

Taking (4.11) into account we can rewrite (4.7) in the form

AW = N (RO)q, g — Y pels + F 0 + & (X) (4.12)

We will continue our consideration of Eq. (2.4) with test function v = e#)(5) (k = 1), only now
we will consider terms corresponding to m = —2. For these we have

o, ==0 inQyoff?n; =0 on7y (4.13)
Relations (2.5) with m = 2 give
of? = ettty + Gikabit ax — BIYO (4.14)

Substituting (4.12) into (4.14) we obtain the equation
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0~ @uiy + GNP (RO)e. pryx —
- aijmﬁ!/su:(c?)rx.\-ﬁx + aijl'rtF;:me, ax T &ijkalk, ax — ﬁg)e (4.15)
In addition, according to the definition of the functions i) from expansion (2.1), we conclude
that
#® (X, §) is periodic in y,, y, on S,and <&a*'>=0 (4.16)

The solution of problem (4.13), (4.15) and (4.16) is again obtained by introducing cell problems.
In this case this is the second cell problem of thermo-elasticity

(ailktT‘klP}'v + aunyN:“), w=01in P, 4.17)
(@maTe)y + aipyNE)n; =0 on y

To®Y (¥) is periodic in y; and y, on §; and (}“B") = 0 and the third problem of thermo-elasticity
(@G + @ijaF¥)), jy =0 in P, : (4.18)

a) (0]
(@ijGEy + BijaFX “»r; =0 on vy

G () is periodic in y; and y, on §; and (G®)=0.
After this the solution of (4.13), (4.15) and (4.16) is obtained in the form

a® =N amu:(;?)axﬂx + va (RO)a, pxyx + ‘,V“ﬂﬂwa‘ px -+
£ G0 g + FY0 — ygy 5.6 (4.19)

Substituting (4.19) into (4.15) we obtain

0f5® = (@ijkiVETly — Ysisap) s axpx + (CimNEgy + Gijap) Wa, px +
F (@i T30, 4 aioNeP) (ROY, peys + (ijkGhty + 2ijkaFi) 0, ax +
+ (@ijirF l(rl,)ty —Bie (4.20)
The first two terms of relation (4.20) are identical with those obtained in [1] for a purely elastic
plate, and the term B0 corresponds to [2].
Integrating over the periodicity cell P; Eq. (4.20) and the same equation multiplied by y;, we

obtain defining equations connecting the forces and moments N~ and M (-2 with deformation
and thermal characteristics.

The defining relations. The elastic and thermo-elastic constants of the plate are the coefficients in
the equations connecting the forces and moments with the deformation and temperature character-
istics. We will write these.

The elastic constants

Al = (@ijap + @ipaVilh) ¥ (4.21)

v, n=0, 1

for v = p = 0—the stiffnesses to stretching (in the plane of the plate), for v+ p = 1—the
skew-symmetric part of the stiffnesses, and v = p. = 1—the stiffnesses to bending.
The thermo-elastic constants

z‘?“ =— <(ﬁg) - aiiklpg)lv) ys*> (4.22)
Flio = (@G ly + ijkaF i) Y5
T/jay = <(ai1sz%?rv + GipeyVie ) Y3

with p = 0—the thermo-elastics for deformation in the plane of the plate, and i = 1-—for bending.
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The defining equations. Using the quantities (4.21) and (4.22) introduced above, we can write [in
doing so we take into account expression (4.11)]

N5 = Adpopu? px — B (4.23)
(-2 0 1
NVO ) = Amswa' Bx + Avau;(,?)axgx + T;oga,ﬂu u((g,)ﬂxxx + Fg’ﬂae. ax T B'f’lb)oe
(=2) 1 2
Mys" = AyoapWy, px -+ Avbaﬁug:)axﬂx + Tfrlﬂ)aﬂn “g,.) Bxxx F:rbae. ax ™ 5910) '0

The equations of equilibrium. We have from (3.1) and (3.2)
Niglss =0, Nyglox =0, Niglee =0, — MgPo + Ni» =0 (4.24)

The boundary conditions. These are obtained in the same way as in [1] by substituting expansion
(2.1) into the initial boundary conditions and have the form

.,y
U (R) =0, waR)=0a=1,2 wX)=28L) _gonos (425

Problem (4.23)—(4.25) is the asymptotic version of the problem of the thermo-elasticity of thin
plates. It is to a large extent analogous to the classical model but it is not completely identical.

The number of unknowns in the thermo-elasticity problem. In the case of the purely elastic
problem, the quantities u,(” and w, (o = 1, 2) satisfy the same equations, see [1], as a result of
which they may be identified. The solution of the bending problem, correspondingly, can be found
in terms of the vector (w;,w,,u;?), which can be treated as the classical three-dimensional
displacement vector [although in the initial meaning its components are the elements of the
expansion (2.1) of the displacement vector in problem (1.1)]. In the case of the thermo-elasticity
problem, even when there is no bending (when u5® = 0) and non-classical effects (see below) 1"
and w, (a = 1, 2) cannot be identified, since they satisfy different defining equations [with thermal
expansion constants B = BQ° for NG and NG?, see (4.23)]. Hence, the five-dimensional
vector (i, ®, u, @, wy, wo, us'®) acts as the solution of the thermo-elasticity problem for plates. In
this case the problem in terms of (u;¥, u,(")—the displacements in the plane of the plate, is not
related to the problem in terms of (wy, w,, us'”), which are displacements of a bending nature and
can be solved independently of the latter (but not, in general, vice versa).

5. THE GEOMETRICAL AND PHYSICAL ASYMPTOTIC FORMS

1. In the case of the physical asymptotic form, when B,.(].O) = 0, but virtue of (4.5) and (4.18) we
have that F@ = G{* = 0, and by virtue of R8 = 0 [see (4.11)] the term with T*P” does not occur in
the defining equations. In this case 1;,'? = 4, = 0 and need not be considered, while the defining
equations for the problem with respect to (wy, w,, us®) are obtained if in (4.23) we formally put
B{* = T{®* =F¥, = 0. In this case BR" = Oindicates that the plate on heating does not expand
in its plane. This completely agrees with the fact that the coefficient of thermal expansion of the
material of the plate B; = ¢ {3,5-1 +...—>0when e—0 [see (1.3)].

2. The geometrical asymptotic form corresponds to the case B,@ #0, which, generally speaking,
leads to the presence of all the coefficients in (4.23). This asymptotic form corresponds, in
particular, to “normal” thermal expansion of the plate in its plane (according to (1.3), B; = {7 in

this case).

A uniform plate of constant thickness, the geometrical asymptotic form. Suppose the plate is made
of a uniform isotropic material and has constant thickness:

aju==const, Py=const, P,=[—1 1}’X[--"}.. '/s]
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In this case the solutions of problems (4.4) and (4.5) are as follows:

NI yaBe _ o NP ‘lllaaaﬁ Vs

F(IO) — F;O) — ()' f'g)) — ﬁaa y;'

Q3333

Substituting these expressions into (4.17) and (4.18), respectively, and solving the resulting
problems, we obtain

T® =0 for %7, T?"=—;M (.‘Iaz_L>
G3333

D=0 for uska, GF =— SPu (, )
20555

Substituting these expressions into (4.22) we obtain

Fije = <('— Qijos aﬂ,::, Ys + amu Bay ya) ya"> =0
ya) > =0

Ty = <(-— @ijrs -A“P— Vs + auw
Here we have used the well-known symmetry of the elastic-constant tensor [3]. By making the

coefficients T o zero we “decouple” the problems with respect to (1, u,(?) and (w;, wy, u3®).

Plates of non-constant thickness made of uniform material. Suppose, as above, that a;;; = const,
By = const, but P, is an arbitrary region (capable of acting as a periodicity cell). In this case,
generally speaking, Fi , T";op,#0.
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